Lecture 13— Poisson Formula

Consider y € B,(z) we have shown in the h.w that if g € C(9B,(z)) then

r?—ly—zf / g(x)d"'x

u(y) = (Kz,rg)(y) == Ry = — g

9B.(z)
is u € C*(B,(z)) and solves
Au=0 1in B.(2)
u=g on dB.(z)

Conversely, if Au =0 in B,(z), with u € C?(B,(2)) N C°(B.(2))

= u= KZ,’I"(U|BBT(Z))

Removable Singularity Theorem

Theorem 1. u € C?(Q/{0}), Au=0 € Q/{0}. We assume boundedness; that is, u(x) = O(1) as
|z] — 0. In precise,
M < oo, >0 st |u(z)| < M for B,/{0},

Then u can be extended to Q0 as a harmonic function, i.e u(0) can be chosen so that Au =0 in 2.

_ Av=0 €B,
Proof. Choose Br C €, § € (0, R). Let v be such that Y < = w = u —v. Clearly,
v=1u on 0BRr
Aw =0 € Br/Bs. w=0on dBg. |v] <M by Maximum principal, and so |w| < 2M. Set

2Mon?

o(x) = T2 (Ap =0)

by construction ¢ > 0 on dBr meanwhile ¢ = 2M on dBs We use the comparison principal
= w< ¢on d(Br/Bs) = w < ¢in Br/Bs.
—w < ¢ on d(Br/Bs) = w > —¢ in Br/Bs

= |w| < ¢

hence
QM2

jw(z)| <

Ex. |w(z)| = ofja[>").
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Harnack Inequality
Consider Br(y) D B-(z) x € Br(y) and v > 0 Au = 0, then

1 1 | Br]
u(r) = — U< — U= u(y)
|Br| JB, () |Br| J By |B:|

in other words the case you have two balls of x and y far from each other you can connect them by a
chain of balls and reppply the thing above to get to y suppose K compact in 2 then

ACk st u(z) < cpuly) Ve,ye K
Theorem 2. Q) domain K C Q compact
ACk s.t u(x) < cpuly)  Vo,y € K, u >0 harmonic in §

Problem can happpen if the balls of x and y are not 'nicely’ connected. ie. maybe narrow connection
of hamronicity.

Proof. Define

S(x,y) = sup {u(x) : u > harmonic in Q}
u(y)
Want : IM < o0 s.t S(z,y) <M (x,y) € Q2 xQ

Claim: S(z,y) <oco z,y €.

xeN Y,={yeN:S(zy) <0} z€%,

Yy €Yy 3B, (y) CQ = u(z) < Culy) z€ B,(y)
= S(z,2) < S(x,y) = X, open.

Now,
Hyr} CXsy yk 2y €Q = X, closed. = X, =Q.

Claim proved. Consider compact (a,b) € K x K and define § = dist(k, 00Q).
x € By(a), y € B.(b) §>0withr=473/2

there exists constant C.

hence



Harnack Thm I

Theorem 3. Consider & C R"™ bdd domain and {uy,us...} sequence of harmonic functions in €,
converging uniformly on the boundary 0S). Then,

u; = u  uniformly in Q with Au = 0.
Furthermore, VK C Q compact, Ya multi-indez,
0%; — 0% uniformly in K.
Proof. u; — u; is harmonic in 2. By MP

unif

lui — u;| < sup lu; —uj| = wi — u, hence u € C°(Q)
o9

and

lim w;(x) = 1 lim / u; (1)

i—00 |BT| i—00
B, (x)
1 / . 1 /
= lim w; = u. (2)
| B, | i—00 | B, |
B, (x) B, (z)

In more details, passing the limit under the integral is due to

/|u1 —u| < |B,| sup |u; —ul.
FA B, (x)

This concludes that the MVP holds for u so w is harmonic in . In particular u € C*(2), hence all
derivatives exist for u, and so

e
|0%u; () — 0%u(x)| < |al! (@) sup |u; — ul
r r(z)
—_—————
-0

Noting that the compactness of K insures that r remains finitely away from zero, as to allow the
inequality to vanish as supp, (. |u; — u| vanishes as i — oo. O

Harnak II

Theorem 4. Q) bdd domain. uy < us < ... seq of harmonic functions in ) then either
ui(x) > o0  Va e

or
ug = u  loc. uniformly in Qwith Au=0.



Proof. Suppose u(z) < M < oo for some M. K C Q compact with K 3 2. By monotonicity of {u;}
and compactness, (in particular boundedness) of K, the monotonic convergence theorem implies

u;(z) — £ €R. (3)
by Harnack inequality, Jci > 0 for every k

1

a(ujer(x) —uj(2)) < ujrn(y) — wi(y) < ck(wjpm(x) —uj(w)).

By the previous result (3), the RHS and LHS of the inequality above defines Cauchy sequences, hence
ui(y) > u(y) on K

hence u; — u locally uniformly. By Harnack I, v is harmonic. This is done by taking any compact
set K and we have uniform convergence. O



