
Lecture 13— Poisson Formula

Consider y ∈ Br(z) we have shown in the h.w that if g ∈ C(∂Br(z)) then

u(y) = (Kz, rg)(y) :=
r2 − |y − z|2

r|Sn−1|

∫
∂Br(z)

g(x)dn−1x

|x− y|n

is u ∈ C∞(Br(z)) and solves {
∆u = 0 in Br(z)

u = g on ∂Br(z)

Conversely, if ∆u = 0 in Br(z), with u ∈ C2(Br(z)) ∩ C0(Br(z))

=⇒ u = Kz,r(u|∂Br(z))

Removable Singularity Theorem

Theorem 1. u ∈ C2(Ω/{0}), ∆u = 0 ∈ Ω/{0}. We assume boundedness; that is, u(x) = O(1) as
|x| → 0. In precise,

∃M <∞, r > 0 s.t |u(x)| < M for Br/{0},

Then u can be extended to Ω as a harmonic function, i.e u(0) can be chosen so that ∆u = 0 in Ω.

Proof. Choose BR ⊂ Ω, δ ∈ (0, R). Let v be such that

{
∆v = 0 ∈ Br
v = u on ∂BR

=⇒ w = u− v. Clearly,

∆w = 0 ∈ BR/Bδ. w = 0 on ∂BR. |v| ≤M by Maximum principal, and so |w| ≤ 2M. Set

φ(x) =
2Mδn−2

|x|n−2
(∆φ = 0)

by construction φ ≥ 0 on ∂BR meanwhile φ = 2M on ∂Bδ We use the comparison principal

=⇒ w ≤ φ on ∂(BR/Bδ) =⇒ w ≤ φ in BR/Bδ.

−w ≤ φ on ∂(BR/Bδ) =⇒ w ≥ −φ in BR/Bδ
=⇒ |w| ≤ φ

hence

|w(x)| ≤ 2Mδn−2

|x|n−2
→ 0 as δ → 0 =⇒ w = 0 in BR/{0}

Ex. |w(x)| = o(|x|2−n).
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Harnack Inequality

Consider BR(y) ⊃ Br(x) x ∈ BR(y) and u ≥ 0 ∆u = 0, then

u(x) =
1

|Br|

∫
Br(x)

u ≤ 1

|Br|

∫
BR(y)

u =
|BR|
|Br|

u(y)

in other words the case you have two balls of x and y far from each other you can connect them by a
chain of balls and reppply the thing above to get to y suppose K compact in Ω then

∃Ck s.t u(x) ≤ cku(y) ∀x, y ∈ K

Theorem 2. Ω domain K ⊂ Ω compact

∃Ck s.t u(x) ≤ cku(y) ∀x, y ∈ K, u ≥ 0 harmonic in Ω

Problem can happpen if the balls of x and y are not ’nicely’ connected. ie. maybe narrow connection
of hamronicity.

Proof. Define

S(x, y) = sup

{
u(x)

u(y)
: u ≥ harmonic in Ω

}
Want : ∃M <∞ s.t S(x, y) ≤M (x, y) ∈ Ω× Ω
Claim: S(x, y) <∞ x, y ∈ Ω.

x ∈ Ω Σx = {y ∈ Ω : S(x, y) <∞} x ∈ Σx

y ∈ Σx. ∃Br(y) ⊂ Ω =⇒ u(z) ≤ Cu(y) z ∈ Bρ(y)

=⇒ S(x, z) ≤ S(x, y) =⇒ Σx open.

Now,
∃{yk} ⊂ Σx, yk → y ∈ Ω =⇒ Σx closed. =⇒ Σx = Ω.

Claim proved. Consider compact (a, b) ∈ K ×K and define δ = dist(k, ∂Ω).

x ∈ Br(a), y ∈ Br(b) δ > 0 with r = δ/2

there exists constant Cr

u(y) ∈ Cr(b), u(x) ≥ 1

Cr
u(a)

(x, y) ∈ Br(a)×Br(b)
u(y)

u(x)
≤ Cru(b)

1/Cru(a)
≤ C2

rS(a, b)

hence
S(x, y) ≤ C2

r (a, b) M = C2
r max

a,b
S(a, b).
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Harnack Thm I

Theorem 3. Consider Ω ⊂ Rn bdd domain and {u1, u2...} sequence of harmonic functions in Ω,
converging uniformly on the boundary ∂Ω. Then,

ui → u uniformly in Ω with ∆u = 0.

Furthermore, ∀K ⊂ Ω compact, ∀α multi-index,

∂αui → ∂αu uniformly in K.

Proof. ui − uj is harmonic in Ω. By MP

|ui − uj | ≤ sup
∂Ω
|ui − uj | =⇒ ui

unif−−−→ u , hence u ∈ C0(Ω)

and

lim
i→∞

ui(x) =
1

|Br|
lim
i→∞

∫
Br(x)

ui (1)

=
1

|Br|

∫
Br(x)

lim
i→∞

ui =
1

|Br|

∫
Br(x)

u. (2)

In more details, passing the limit under the integral is due to∫
Br

|ui − u| ≤ |Br| sup
Br(x)

|ui − u|.

This concludes that the MVP holds for u so u is harmonic in Ω. In particular u ∈ Cω(Ω), hence all
derivatives exist for u, and so

|∂αui(x)− ∂αu(x)| ≤ |α|!
(ne
r

)|α|
sup
Br(x)

|ui − u|︸ ︷︷ ︸
→0

Noting that the compactness of K insures that r remains finitely away from zero, as to allow the
inequality to vanish as supBr(x) |ui − u| vanishes as i→∞.

Harnak II

Theorem 4. Ω bdd domain. u1 ≤ u2 ≤ ... seq of harmonic functions in Ω then either

ui(x)→∞ ∀x ∈ Ω.

or
uk → u loc. uniformly in Ωwith ∆u = 0.
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Proof. Suppose u(x) ≤ M < ∞ for some M . K ⊂ Ω compact with K 3 x. By monotonicity of {ui}
and compactness, (in particular boundedness) of K, the monotonic convergence theorem implies

ui(x)→ ξ ∈ R. (3)

by Harnack inequality, ∃ck > 0 for every k

1

ck
(uj+m(x)− uj(x)) ≤ uj+k(y)− uj(y) ≤ ck(uj+m(x)− uj(x)).

By the previous result (3), the RHS and LHS of the inequality above defines Cauchy sequences, hence

uj(y)→ u(y) on K

hence uj → u locally uniformly. By Harnack I, u is harmonic. This is done by taking any compact
set K and we have uniform convergence.
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